Monomials example sentences

Related (5): coefficients, variables, constants, degree, exponent

"Monomials" Example Sentences

1. Monomials are an important part of algebraic expressions.
2. The degree of a monomial depends on the exponents of its variables.
3. Two monomials with the same degree can be combined by adding their coefficients.
4. Dividing a monomial by another monomial involves subtracting the exponents of the variables.
5. Monomials are the building blocks of polynomial expressions.
6. Quadratic equations can be factored into monomials.
7. Monomials can be multiplied by using the distributive property.
8. The product of two monomials with the same base is equal to the base raised to the sum of their exponents.
9. Monomials can be raised to a power by multiplying their exponents.
10. A binomial is a polynomial that has only two monomials.
11. Monomials can be added or subtracted by combining like terms.
12. The constant term of a polynomial is the sum of all of the monomials that have no variables.
13. The highest degree monomial in a polynomial is the leading term.
14. The degree of a polynomial is the highest degree of its monomials.
15. The sum of two monomials with different degrees cannot be simplified further.
16. The product of two monomials with different bases cannot be simplified further.
17. A variable expression is a polynomial that contains at least one monomial with a variable.
18. Monomials with negative exponents can be rewritten as fractions.
19. The product of two monomials with different variables can be simplified by setting their coefficients equal to each other and solving for the variables.
20. The product of two monomials with the same variable can be simplified by adding their exponents.
21. The quotient of two monomials can be simplified by dividing their coefficients and subtracting their exponents.
22. Monomials are used in various areas of mathematics, including geometry and calculus.
23. A monomial with a degree of zero is a constant.
24. A monomial with a degree of one is a linear expression.
25. The product of a monomial and a binomial is a trinomial.
26. Monomials can be used to model real-world situations, such as compound interest and population growth.
27. The sum of two monomials with the same degree and opposite signs is equal to zero.
28. The coefficient of a monomial is the number that is multiplied by the variables.
29. The monomials x, y, and z are frequently used as variables in algebra.
30. Combining monomials with the same base and different exponents is equivalent to performing a series of multiplication.

Common Phases

1. Monomials are polynomial expressions containing only one term;
2. Monomials have a degree that is the sum of the exponents of their variables;
3. Monomials are usually written in descending order of the exponents of their variables;
4. Multiplying or dividing monomials involve adding or subtracting the exponents of their variables;
5. Monomials can be added or subtracted only if they have the same variables and degree;
6. Monomials are often classified according to their degree, such as linear, quadratic, or cubic;
7. Evaluating monomials involves substituting the given values for the variables and performing the indicated operations.

Recently Searched

  › Monomials [məˈnōmēəl]
  › Gearwheels
  › Pasta
  › Gearset
  › Wittiness
  › Gearings
  › Unilever
  › Tummyaches [ˈstəməkˌāk]
  › Indorsement
  › Gearsets
  › Expectants [ikˈspektənt]
  › Gearn
  › Quidditch
  › Adamantine
  › Libro
  › Collate
  › Libration
  › Libris
  › Doctorings
  › Leadsman
  › Librium
  › Chersonese
  › Favs

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z